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LETTER TO THE EDITOR 

Spin fluctuations in an ordered Heisenberg ferromagnet with 
dipolar interactions 

Stephen W Lovesey 
Rutherford Appleton Iaborato~~, Oxfordshire 0x11 OQX, IJK 

Received 9 March 1993 

Abstract. Results from a thwr&cal analysis of the Heisenberg model of a femmagnet. 
including dipolar interactions, are successfully used to interpret recent measurements pfomed 
on EuS. just below the critical temperature. that pmte Ihe dynamics of long-wavelength 
spin fluctuations paraUel (IongiNdinat) and perpendicular ( k a n s v e ~ )  to the spontaneous 
magnetization. Aftention is given in the paper lo longitudinal fluctuations following this and 
other related experimental investigations on the topic. With a view to future experiments, 
propenies of Ihe spin dynamics in the critical region are discussed within the framework of the 
coupled-mode approximation 

While realistic models of magnetic materials include dipolar forces. which are responsible 
among other things for demagnetization effects, many experiments that probe magnetic 
properties on an atomic scale are relatively insensitive to them. In the case of experiments 
designed to investigate the dynamics of spin fluctuations, dipolar forces are only influential at 
very large wavelengths and small frequencies. To put this comment on a more quantitative 
basis, let us use a standard measure of the strength of the dipolar forces in a magnetic 
material, the dipolar wavevector 9d. If c is the exchange stiffness, determined by the 
strength and range of the Heisenberg exchange interactions, 96 is defined by 

in which uo is the unit cell volume and g is the gyromagnetic factor; values of 9d for 
some materials of current interest are provided in table 1. It is found that dipolar forces 
influence the dynamics of spin fluctuations with a wavevector k < 9d, while for k >> 9 d  
the Heisenberg exchange, which generates Bloch spin waves, is the dominant contribution 
to the Hamiltonian energy. Clearly, dipolar forces will be important in determining the 
nature of critical phenomena when the inverse correlation length K ( K  = 0 at the critical 
temperature ‘TJ is comparable to 9d. 

Theoretical estimates of long-wavelength spin-wave frequencies (magnetostatic modes) 
have been provided by Holstein and Primakoff (1940) and are well understood. Perhaps 
the first estimate of the influence of dipolar forces on relaxation processes in the critical 
region was given by Huber (1971) who predicted their extreme importance in determining 
properties of EuO. He also exposed the special features of the dipolar-induced relaxation 
process that stem from breaking conservation of the total spin (magnetization). Extensive 
work based on the coupled-mode approximation now provides a fairly complete description 
which is consistent with available experimental findings of the wavevector and frequency 
dependence of spin fluctuations (Frey and Schwabl 1988. Frey er ai 1989). 

Another aspect of the spin dynamics of a ferromagnet which has recently received 
attention is the nature of the spectrum of spin fluctuations parallel to the magnetization, often 
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called longitudinal fluctuations. Measurements made on nickel, in which dipolar interactions 
are relatively weak (cf table I), show that the longitudinal spectrum is quasielastic. and 
very similar to fluctuations observed in the paramagnetic phase (Bani et a1 1991a). The 
investigators have drawn attention to the unexpectedly large width of the quasielastic 
spectrum, which is part of the reason why in earlier measurements the longitudinal spectrum 
was not successfully distinguished from the relatively intense specuum of transverse 
fluctuations. However, at present there is no strong experimental evidence for the expected 
divergence of the integrated intensity (susceptibility) on approaching a magnetic Bragg 
reflection; see, for example, (6). and Cuccoli et al (1993). The divergence in question is a 
manifestation of Goldstone bosons, and its prediction dates back to Holstein and Primakoff 
( 1940). 

Tnble 1. Material para mete^. 

Malerial qd (A- ' )  Experimenl on Eus. Bani (1993) 
Ni 0.01 C c 0.37meV hz 
EuO 0.15 T = 0.87% = 1.24 meV 
EuS 026 R = 0.19 A-' 
LiTbF4 1.31 U0 c 52.7 h3 

D = 1.20 mev A2 
( (S ) /S )  c 0.47 

AC c 2.42. 
H = 1HkG 

= 1 . 4 h  

a Stanley (1971). 

Recent theoretical and experimental work on the influence of dipolar forces on dynamic 
critical phenomena has focused on properties in the ordered magnetic phase (T e Tc). 
Toperverg and Yashenkin (1992) have used a perturbative treatment of dipolar forces 
to calculate transverse and longitudinal relaxation rates required for the interpretation of 
ferromagnetic resonance signals observed in the temperature range up to the critical region. 
Here, we report findings for the wavevector and frequency-dependent response functions 
observed for EuS in preparatory experiments by Boni (1993). One reason for investigating 
this material is that the relatively large qd leads one to expect ready observation of dipolar 
induced effects. The calculation employs the coupled mode approximation, which should 
be reliable at high temperatures and in the critical region There is complete accord between 
the experimental and theoretical findings at the level permitted by the preliminq nature of 
the measurements. 

We shall choose to report and discuss our findings that directly relate to the experimental 
observations for EuS, then outline the main features of the calculations which lead to the 
results, and conclude with predictions for the extreme critical region. For the conditions 
of the experiment (T = 0.87Tc, k = 0.19 .&-I) it is sufficient to evaluate the dynamic self- 
energy (memory function) at the first level of approximation while in the critical region it 
is essential to make a self-consistent, or non-perturbative, calculation. The contribution to 
the self-energy we first consider is purely dipolar in origin, and nGvely of order A* where 
the energy parameter A = cqi (= 0.025 meV for EuS). When k < 46 the pure exchange 
and exchange-dipolar induced contributions to damping are relatively small corrections, and 
they always vanish in the limit k + 0. 

By utilizing polarization analysis Boni (1993) has separated vm'ous contributions 10 
the neutron scattering cross-section. In view of the dipolar-induced spatial anisotropy the 
direction of k relative to the magnetization is an important va6able. Spin variables with 
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components parallel and perpendicular to the spontaneous magnetization are referred to as 
longitudinal and transverse variables, respectively. The scattering geometry did not give 
access to events in which k has a component parallel to the magnetization. The structure of 
the cross-section observed in the experiments is reviewed by Lovesey and Trohidou (1991). 
together with a description of the transverse specbum predicted by linear spin-wave theory. 

When k is perpendicular to the magnetization the full dipolar anisotropy contributes a 
gap in the spin-wave dispersion at the Brillouin zone centre. The appropriate expression is 
found to be ( I C  I z )  

(2) 
where h is the Zeeman energy, modified by sample shape dependent demagnetizing effects, 
(S) is the thermally averaged spin moment (in the z-direction) and the spin-wave stiffness 
D = 2c(S) .  Boni (1993) observed well defined spin-wave excitations in the transverse 
spectrum, consistent with our theory, and report a value A(S) = 0.041 meV. This value, 
taken together with a knowledge of the exchange interactions, yields (for T = 0.87 Tc) the 
values D = 1.20 meV A’ and ( ( S ) / S )  = 0.47, where S = 7/2. There and various other 
quantities required in the interpretation of the experiment are gathered in table 1. 

It is well established that the approximation for the temperature dependence of the 
spin-wave stiffness given in the previous paragraph, in which D is proportional to the 
magnetization, does not give good agreement with experimental data. However, data are 
in tolerable agreement with a theory, based on the Dyson Hamiltonian, that predicts a 
renormalization of D with temperature coming from the change with temperature of the 
(spin-wave) energy (Cuccoli et a1 1993). Hence, we are not surprised that the value 
for D given in table I ,  and used in subsequent numerical estimates, differs from the 
value deduced from preliminary experimental data, (Boni, private communication). The 
discrepancy between the experimental finding and D = 2c(S) = 1.20 meV A’ is completely 
consistent with results obtained by Cuccoli er a1 (1993) from the more sophisticated theory. 
However, in the present context of a theory for damping, internal consistency is respected 
with use of the quoted value for D. It is also worth remarking that, the value we have 
deduced for the magnetization is in accord with previous experimental work (Passell et a1 
1976) and the theoretical investigation by Cuccoli et nl (1993). 

The corresponding expression for the damping of the transverse spin-wave is found to 
be (k I z )  

Q = h + Dk2 + h(S)  

rL = (I/IS~~)(AT~~/~D)’(€~/~(S)~). (3) 
We find (fl /ct)  = 5% at UJ = Q. The reported experimental observation that the spin- 
wave linewidth in EuS is resolution limited is consistent with this estimate, which is the 
only source of damping in the limit k -+ 0. 

Turning next to the longitudinal fluctuations, we find that there is no collective mode 
and the damping ( I C  I z )  

r(k) = (a&/ 1 . 5 ~ )  (kD”’/m3’*) (A (S))’ , (4) 
Evaluated for w at the gap energy we find ( r / h ( S ) )  = 20. These theoretical findings are 
in accord with the observations that, the longitudinal fluctuations are quasielastic, and their 
linewidth corresponds roughly to the energy of the transverse spin-wave. Note that (3) and 
(4) are lower bounds in the sense that they are c o m t  in the limit k -+ 0. A small k, used 
in the experiments, will engage small damping contributions generated by pure exchange, 
and exchange-dipolar processes, and we have more to say on this issue later in the paper. 

Non-linear spin wave events and dipolar forces have been shown to generate two other 
striking features of the neutron scattering cross-section. First, the spechum of transverse 
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fluctuations contains a quasi-elastic component whose intensity depends on the orientation of 
the wave vector relative to the reciprocal lattice vector that defines the selected ferromagnetic 
Bragg peak. Secondly, the intensity of the longitudinal quasi-elastic fluctuations does not 
decrease smoothly with increasing wave vector, as predicted by linear spin wave theory 
(Trohidou and Lovesey 1993). but displays some structure fork in the neighbourhood of 

It is interesting to observe that (3) and (4) are consistent with a dynamic scaling 
exponent z = 3 - p / u  IT 5/2 (B = i u ( l  + q )  2: +U). To this end, we use dimensionless 
variables ( w / h ( S ) )  and ( K / q d ) .  On the other hand, it is known that when the dipolar 
interaction dominates the Heisenberg exchange, the marginal dimension is three, and critical 
fluctuations are very weak (Als-Nielsen and Birgeneau 1977, Zinn-Justin 1990). In this case, 
critical exponents agree with the Landau, or molecular field, theory of a continuous phase 
transition applied to a non-conserved order parameter. Evidently the estimates (3) and (4) 
are appropriate for the isotropic phase, and the dipolar (anisotropic) phase is reached in the 
limit T -+ Tc. To shed more light on this question, and the range of validity of the estimates 
(3) and (4), we examine the first correction to the Landau value of the discontinuity in the 
specific heat. For us to be correct in the use of the thermodynamic (perturbation) approach 
this must be a small correction, which is indeed the case when 

q d .  

r > > G [ ( l / f ) l n ( f + J ( l + f Z ) } 1 2  
where f = ( q d / K ) .  the reduced temperature r = (Tc - T) /T ,  and the Ginzburg parameter, 

G = { v o / l 6 ~ r r ~ A C } ~  

in which AC is the discontinuity in the specific heat according to the Landau (molecular 
field) theory, and r l  is a measure of the range of the exchange interactions. For EuS (EuO) 
we find G = 0.024 (0.005) and the condition is well satisfied. As T -+ T,, f -+ 03 and 
eventually the Ginzburg condition is not satisfied (in making this analysis K' o[ T in keeping 
with the Landau theory). In the limit T -+ T,, the full non-linear coupled-mode theory is 
essential to obtain a cross-over from the isotropic to dipolar (anisotropic) behaviour. 

By way of contrast to the result (4) for the damping of longitudinal fluctuations in the 
extreme limit k -+ 0, we give the results for the damping generated by the pure exchange 
mechanism and the first corrections due to dipolar forces. The result valid for small k and 
leading-order in h is, 

r(k) = (voTk/4irD~(lc)){  I - (A(S)Dk2/3wZ)(7 + 3cos2&)) (5) 
where ek is the angle between k and the direction of the spontaneous magnetization (z-axis), 
and the appropriate form of the longitudinal susceptibility has been obtained by Lovesey 
and Trohidou (1991). namely 

~ ( k )  = (Tuo/16DZk) .  (6) 
It is interesting to find that dipolar forces, treated as a weak perturbation, on the one hand 
decrease the longitudinal susceptibility by approximately a factor of two, yet in r (h)  the 
effect of this change is partially negated by the explicit correction of order h. The expression 
(6) for the susceptibility has been used in the calculations that lead to (3) and (4). 

The results presented and discussed in the foregoing paragraphs have been obtained 
from a coupled-mode analysis, generated by the generalized Langevin equation, in which 
five variables are treated on an equal footing. Four variables relate to transverse fluctuations 
(S t ,  S$J and the fifth is Si ;  a feature of the dipolar interactions is that off-diagonal 
correlations are finite, e.g. (S,'S$} # 0. The equations of motion for the construction 
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In these equations, J(q )  is the spatial Fourier transform of the Heisenberg exchange 
interaction, and q+ = & & iGy where 6 is a unit vector (the spontaneous magnetization 
defines the z-axis). A review of the use of the Langevin equation formalism to construct 
coupled-mode equations is given by Lovesey (1986), together with an introduction to 
dynamic critical phenomena, while Frey and Schwabl (1988) use the formalism to discuss 
the ordered isotropic ( q d  = 0) Heisenberg magnet. 

The longitudinal relaxation function F(k,  I )  satisfies 

P(k,  t )  = - I’ dl’F(k, t - t’)K(lE, t’) (9) 

and in the limit k + 0, where dipolar terms in the equations of motion dominate, the 
coupled-mode approximation for the memory functions K ( k ,  t) is 

Here, x A ( q )  and Fl(q.t) are the transverse susceptibility and relaxation function, 
respectively. The result (4) is obtained from (10) evaluated with a linearized approximation 
for F l  in which FA@. I)  = exp(-ifck), and ,y~(k) = ( S ) / € k .  We will not write out the 
pure exchange and dipolar-exchange contributions to K ( k ,  t) used to obtain (5). In the 
latter both contributions are required to obtain the term proportional to A. 

The corresponding equation for Fl(k, t )  contains an oscillatory component at the natural 
frequency € k ,  while the memory function is 

1 
L ( k ,  0 = W2T(AsinZ 6k + 2ck2)- C(q+q-)*x(41)xI(q)F(q, 1) ReFi(q, 0. (11) 

N ,  
Equation (I  I )  evaluated with linearized relaxation functions leads directly to the estimate 
(3) for the damping of the transverse collective modes. 

By way or orientation to a discussion of relaxation in the extreme critical region we 
give the result for a simple isotropic ferromagnet (h = qa = 0). In the limit ( K / k )  + 0 the 
self-consistent solution of the coupled-mode equations is 

where the non-universal energy constant e = (ZTcv~c/3x2)‘~2. The critical exponent L = 
5/2 has been verified in a number of experiments; see Boni et  a1 (1991a) and references 
therein. 

The memory functions (IO) and (11) for relaxation via purely dipolar processes have 
been analysed in the extreme critical region T + Tc using the expressions 

x l (4)  = (2c(q2 t 46 2 ’ 2  s’n 6q)]-’ 

r ( k )  = r,(k) = e(2/3)’/’k5/’ {rl/r] = 1 - (40/11)(~/k)* 

and x(q) = ( 2 ~ ( q ~ + q ~ c o s ~ 6 ~ ) } - ’ .  
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As expected, we find there are no anomalous contributions to the memory functions 
generated by critical fluctuations. In the anisotropic, dipolar region accessed when 
k << qd(T  + T,) the longitudinal and transverse damping functions are independent of 
the magnitude of the wavevector, Ikl, are proportional to q;". and r(rl) varies with k 
as cos2ek(sin28k). The precise magnitudes of these functions are determined by the self- 
consistent solutions of (IO) and (1 I). These results, together with a full account of all 
contributions for T < T, to the lineshapes and damping functions, will be reported in a 
separate paper. Attention has been given to the interpretation of neutron scattering and muon 
relaxation experiments. The latter experiments have the potential to provide infomation 
not readily obtained from neutron scattering (hvesey et a1 1992, Yaouanc et a1 1993). 

Neutron scattering experiments that employ polarization analysis usually have the 
sample in a static magnetic field. Since a field suppresses critical fluctuations it is natural 
to question whether a field influences the experimental results we have mentioned. To this 
end, we have calculated the damping functions for a simple ferromagnet (qd  = 0) subject 
to a magnetic field. The relevant wavevector q o  = (h/D) ' Iz  increases as T -+ T, because 
D is proportional to the magnetization which ultimately has a field-limited value. For the 
extreme case ( q O / K )  >> 1. the self-consistent solutions of the coupled-mode equations are 

and writing x = ( K / q O )  4 1 an expansion in x reveals at leading order (ri(k)/ r ( k ) ]  = 
1 +(2r)'. For Ni at T = 0.99Tc and H = 1.1 kG one has (qO/K) = 0.38, while for EuS with 
H = 1.64 kG at the same relative temperature ( q O / K )  = 8.2. The large difference in these 
values of ( q O / K )  mainly reflects the fact that the stiffness parameter c is much larger for Ni 
than EuS, cf respective critical temperatures. Hence, a modest magnetic field is probably 
not influential in Ni, whereas it is a significant factor in determining the critical dynamics 
of EuS. 

Dr P Boni kindly sent the author information on the EuS experiment he performed together 
with Dr Martinez and Dr Hennion. A discussion with Professor M Steiner, and the 
ongoing interest of Professor E B Karlsson, Dr R Wappling and Dr A Yaouanc are warmly 
acknowledged. 
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